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Some have argued that the most appropriate measure of team cognition is a holistic measure 
directed at the entire team.  In particular, communication data are useful for measuring team 
cognition because of the holistic nature of the data, and because of the connection between 
communication and declarative cognition.  In order to circumvent the logistic difficulties of 
communication data, the present paper proposes several relatively automatic methods of analysis.  
Four data types are identified, with low-level physical data vs. content data being one dimension, 
and sequential vs. static data being the other.  Methods addressing all four of these data types are 
proposed, with the exception of static physical data.  Latent Semantic Analysis is an automatic 
method used to assess content, either statically or sequentially.  PRONET is useful to address either 
physical or content-based sequential data, and we propose CHUMS to address sequential physical 
data.  The usefulness of each method to predict team performance data is assessed. 

 
 Team cognition is more than the sum of the 
cognition of the individual team members.  Instead, team 
cognition emerges from the interplay of the individual 
cognition of each team member and team process 
behaviors.  For the purposes of this paper, any small group 
of people collaborating on a task constitutes a team.  The 
typical strategy for measuring team cognition is to define it 
as an aggregate of individual cognition, such as the 
average.  In contrast, if viewed as an emergent property of 
the team as a whole, team cognition should best be 
measured holistically whenever possible (Cooke, Salas, 
Cannon-Bowers, & Stout, 2000).  Communication data 
constitute an inherently holistic measure of the team.  
Further, communication serves similar functions in teams 
that cognitive processes serve in individuals.  The output is 
also analogous to individual verbal reports.  Thus, an 
analysis of team communication provides a window 
through which to view team cognition (Kiekel, Cooke, 
Foltz, & Shope, 2001).  But many communication methods 
are time consuming to employ, and it is often difficult to 
achieve adequate inter-rater reliability.  This paper outlines 
several relatively automatic methods for analyzing 
communication data, and considers their usefulness. 
 It is useful to characterize communication 
measures along two dimensions: “physical” data vs. 
“content” data, and “static” vs. “sequential” analyses.  
Physical measures are relatively low-level measures such 
as duration of speech.  Content measures account for what 
is actually being said.  On the other dimension, sequential 
analyses are those that account for the fact that utterances 
are only made in the context of an ongoing stream of team 
interaction.  Static measures consider the team only at one 
point in time, or as an aggregate of the team’s 
communication over some duration. 
 Toward the objective of automation and to collect 
physical data, we developed software that records quantity 
of verbal communication as an NxK2 communication log 

(CommLog) matrix of dichotomous values.  K is the 
number of team members, and N is the number of time 
intervals (e.g., seconds) across which the communication 
spans.  All possible pairs of the K speakers account for the 
K2 columns.  At each time interval, a measure is 
automatically taken of which team members are talking, 
and to whom.  This creates the N rows in the CommLog 
matrix.  The result enables rapid analyses of sequential 
flow. 
 Content data were taken from transcripts of each 
team as they interacted in a simulated military environment 
across several missions. 
 

METHOD 
 

 This paper shall focus primarily on progress with 
1) Latent Semantic Analysis as an automatic means of 
assessing discourse content, 2) PRONET as a sequential 
method, and 3) CHUMS, a sequential method under 
development. 
 The data for these analyses were collected from an 
experiment, in which 11 teams of three members flew a 
simulated uninhabited air vehicle for 10 missions (Cooke, 
Kiekel, & Helm, 2001).  Each member had a specialized 
role.  All actions of the team members were recorded and 
their speech during the first seven missions was 
transcribed. 
 
 
Latent Semantic Analysis 
 
 Latent Semantic Analysis (LSA; Landauer, Foltz 
& Laham, 1998; Foltz, Kintsch & Landauer, 1998) can be 
used to code content data.  LSA is a computational 
linguistic technique that can measure the semantic 
similarity among units of text.  Its “knowledge” of the 
language is based on a semantic model of domain 



 

knowledge acquired through training on a corpus of 
domain-relevant text.  Through a statistical analysis of how 
words occur across contexts (e.g., paragraphs), LSA 
generates a high-dimensional semantic space, in which 
each original word, as well as larger units of text 
(utterances, paragraphs, documents), are represented as 
vectors in the space.  The derived vectors for words and 
utterances can be correlated by taking the cosine between 
their vectors.  This permits the matching of texts based on 
semantic relatedness, rather than direct keyword overlap 
alone. 
 
PRONET 
 
 PRONET (Cooke, Neville, & Rowe, 1996) is a 
sequential analysis that relies on the network modeling 
tool, Pathfinder (Schvaneveldt, 1990).  Transition 
probability matrices among a set of nodes (i.e., events) are 
input to the Pathfinder algorithm, and a network 
representation of prominent pairwise connections among 
events is generated.  In this way, one can use PRONET to 
determine what events “typically” follow one another, for a 
given lag.  For instance, if two events typically follow one 
another, with one arbitrary event interloping them, then 
PRONET would identify a lag 2 connection.  Two events 
that typically occur simultaneously would yield a lag 0 
connection. 
 PRONET furthermore allows researchers to 
determine “typical” chains of events with more than two 
nodes.  Longer chains are evaluated by testing each node 
pair within the chain, at all required lags.  For instance, the 
chain A B C D could only be considered “typical” if 
transitions are retained at lag 1 for A B, B C, and C D; 
at lag 2 for A C and B D; and at lag 3 for A D. 
 Using physical sequential data, we examined 
“typical” global patterns of turn-taking in speech acts 
(Kiekel, Cooke, Foltz, & Shope, 2001).  Six 
communication events were defined, as beginning or 
ending a speech sequence by each team member.  For 
instance, if the pilot begins speaking, regardless of what 
she says, this is considered the beginning of a speech act, 
by the pilot.  The navigator beginning a speech act is a 
different event, as is the pilot’s cessation of speech. 
 A hypothetical turn-taking sequence might consist 
of the pilot beginning an utterance, then finishing it, then 
the navigator beginning, and the pilot beginning another 
utterance before the navigator finishes.  These five events 
would define the pilot speaking uninterrupted, but then 
interrupting the navigator.  An infinite number of possible 
turn-taking sequences is possible, and our goal was to 
identify prominent patterns. 
 We recorded the events, and retained the order in 
which they occurred.  The six possible events were 
represented as nodes in the subsequent analysis.  The set of 
observed events for each team-at-mission were used to 
define transition probability matrices of various lags.  For 

example, the node sequence “Pilot begins speaking” 
followed in the next event (i.e. at lag one) by “Pilot ends 
speaking” is represented as a cell in the lag 1 transition 
probability matrix.  The event occurs with a probability 
defined as the number of occurrences for that transition, 
divided by the sum total of all transitions between “Pilot 
begins speaking” and all six events. 
 The transition probability matrices served as input 
to PRONET, so that we could identify prominent event 
sequences of speech acts.  We have so far analyzed the 
PRONET output in two ways.  First, we qualitatively 
interpreted the network of “typical” transitions for chains of 
two events separated by one lag.  Here we looked at 
patterns of networks, and looked for changes over missions. 
 For the second type of analysis, we derived all 
“typical” chains of arbitrary length, where a chain’s length 
is equal to the number of nodes it includes.  Then, for each 
team-at-mission, we computed summary statistics on the 
set of chain lengths (i.e. mean chain length, median, 
maximum, minimum, and sum of all lengths).  These 
values were used to predict an external, composite measure 
of team performance. 
 
CHUMS 
 
 Clustering Hypothesized Underlying Models in 
Sequence (CHUMS) is a clustering approach to 
determining discrete pattern shifts in sequential data.  It 
works by clustering putative models defined by segments 
of the sequential data.  Sequential data are first segmented 
into discrete units.  Each unit is used to estimate a model 
against which to test the data in every other unit.  The 
matrix of model fit values comparing each unit to each 
other unit is used as a similarity matrix, with adequate fit 
values indicating similar units. 
 Assuming there are some adequate fit values, the 
data from the two units with the best fit are pooled.  The set 
of hypothesized underlying models is then re-estimated 
with the remaining clusters.  This pairwise model testing 
process continues iteratively until all clusters are 
statistically distinct from one another (i.e. all pairwise 
model tests yield inadequate fits).  Remaining clusters can 
be further analyzed in any way of interest to the researcher.  
The procedure is fully automated by custom software. 
 One promising application of CHUMS is in 
counting the number of distinct communication models 
remaining, after clustering those that have no statistically 
detectable difference.  For this approach, CommLog data 
were used to define models of communication dominance 
among team members.  We separated the mission into 
segments of one-minute duration, and formed multinomial 
models of how much each team member spoke during each 
minute.  Parameters for each model were estimated by the 
proportion of speech exhibited by each person, relative to 
total possible speech for that minute. 
 These models were then used to generate expected 



 

values for every other minute, whose observed deviation 
was tested with a Pearson’s χ2.  CHUMS yielded counts of 
distinct models the team exhibited during each mission. 
 The number of statistically distinct communication 
models in any mission can be thought of as a measure of 
communication stability for that mission.  This was used to 
measure how well the team had an established process for 
the passing of information.  The more patterns exhibited 
during a mission, the less stable the team’s communication, 
and so the less stable their predicted team cognition. 
 If this is a good measure of the stability of team 
cognition, then it should be related to performance and 
situation awareness.  For each team-at-mission, we 
predicted external objective measures of performance and 
situation awareness from (a) the number of distinct models 
and (b) models per minute (i.e. the number of models 
divided by the number of minutes in the mission). 
 

RESULTS AND DISCUSSION 
 
Results Relevant to Physical Data: PRONET 
 
 One qualitative outcome of our use of PRONET as 
described above has been to identify sudden changes in the 
communication pattern between missions.  Curious changes 
in turn-taking can suggest hypotheses about team process.  
Analyses pertaining to this approach are discussed more 
fully by Kiekel, Cooke, Foltz, and Shope (2001). 
 Figure 1 shows a representation of a PRONET-
derived network for lag 1 event transitions.  Arrows 
indicate sequence, such that if the node “Abeg” points to 
“Aend,” it means that person A beginning a speech act is 
“typically” followed by person A ending a speech act. 
 
Early missions Later missions 

Abeg

Aend

Pbeg

Pend

Dbeg

Dend

Abeg

Aend

Pbeg

Pend

Dbeg

Dend  
Figure 1.  PRONET representation of shift in lag-1 team 
communication pattern across missions. 
 
 For this particular team, the first four missions 
showed a pattern such as that on the left, and for the last six 
missions showed a pattern similar to that on the right.  The 
left network we will call “D centered,” because person D is 
the hub of the network.  The right network we will call “A 
centered,” because person A is its hub.  Here, to be the hub 
of the network means that (a) the center person tends to 
finish after they begin speaking, and (b) they tend to begin 
a speech act after both of their partners finish their speech 

acts. 
 The meaning of these networks must be interpreted 
with caution, as they only represent chains of one event, i.e. 
the transition at lag 1.  The benefit of only looking at chains 
of length 1 is that they can easily be graphically displayed.  
The drawback is that the multiple step paths that the image 
seems to imply are not, in fact implied. 
 We have gone on to identify the set of all paths of 
arbitrary length for each team-at-mission.  For this, we 
employed the more quantitative method of recording 
summary statistics on the set of all “typical” chains for each 
team-at-mission.  These variables have shown some 
promise for predicting performance.  Three promising 
variables are the minimum chain length, the maximum 
length, and the median length at each mission. 
 A multiple regression using some combination of 
Minimum, Median, and Maximum yields adequate 
predictions for missions 2, 3, and 5.  For mission 2, a model 
with Maximum and Median yielded R2 = .509, F(2, 8) = 
4.144, p = .058 (βmax = -.800, βmed = .913).  For mission 3, a 
simple linear regression with Minimum yielded R2 = .275, 
F(1, 9) = 3.415, p = .098 (βmin =  
-.524).  For mission 5, model with Minimum and 
Maximum yielded R2 = .628, F(2, 8) = 5.074,  p = .051 
(βmin = 1.437; βmax = -1.117). 
 Collectively, these variables can be thought of as a 
measure of the team’s consistency in turn-taking behavior.  
They are useful predictors of performance, primarily during 
the early missions, when skill acquisition is still underway. 
 Other uses for PRONET are under current 
investigation.  For instance, using PRONET, researchers 
may be able to predict team performance form the mere 
presence of repeated, dramatic changes in turn-taking.  For 
instance, if each session has one person at the center of the 
network, but there is no pattern as to who that center person 
is, then it may be that the team’s communication pattern is 
unstable.  This should be reflected in a low performance 
score.  This method has not yet been tested. 
 A somewhat more quantitative variant on this 
approach is to look for particular patterns that predict good 
performance in teams.  For instance, in this task, it appears 
that the best teams show non-navigator-centered networks 
for early missions (when they are learning the task), but 
switch to navigator-centered networks later on.  These 
results are not reported in detail, because they are still 
being examined as of this writing. 
 
Results Relevant to Physical Data: CHUMS 
 
 We now turn to the use of CHUMS to predict 
external measures of performance and situation awareness 
from the number of distinct models, and models-per-
minute.  When analyzed on a team-by-team basis, the 
success of this method has been mixed so far.  There have 
been very good predictions for some teams, and very poor 
predictions for others.  The search for mediating variables 



 

is underway. 
 But it is of greater interest to analyze these data 
mission-by-mission, across teams as our random variable.  
Mission-by-mission analyses yield negative correlations 
with performance and situation awareness (SA), as 
hypothesized.  If the number of patterns a team tries out is a 
measure of cognitive instability, then more models (and 
models per minute) should lead to poorer performance and 
SA. 
 In predicting performance, tests on models per 
minute showed nothing very impressive.  The best 
prediction was for mission 2, with R2 = .243, F(1,8) = 
2.564, p = .148.  While this accounts for over 24% of the 
variance in performance, it does have a big p-value. 
 Predicting performance with number of models 
was better.  For mission 2, we saw R2 = .373, F(1, 8) = 
4.753, p = .061.  Mission 7 yielded R2 = .287, F(1, 9) = 
3.631, p = .089.  In the honorable mention category, we 
have mission 3 (R2 = .212, F(1, 8) = 2.151, p = .181) and 
mission 8 (R2 = .255, F(1, 8) = 2.731, p = .137. 
 In attempting to predict SA, the only good 
prediction was for mission 7, where models per minute (R2 
= .426, F(1, 8) = 5.934, p = .041) was a better predictor 
than number of models (R2 = .384, F(1, 8) = 4.982, p = 
.056).  Prediction was fairly good for mission 9 for models 
per minute (R2 = .290, F(1, 8) = 3.275, p = .108), but the 
correlation was in the wrong direction.  We are at a loss to 
explain this baffling mystery. 
 It does appear, generally, that measures of team 
communication consistency are more predictive of 
performance during the learning acquisition phase of a task, 
and more predictive of SA after asymptote. 
 Other potential (but as yet untested) applications of 
CHUMS lie in specifically identifying which patterns 
remain after clustering.  For instance, does the pilot usually 
speak the most during the first half of the mission, then 
suddenly clam up when workload gets high?  Specific 
patterns could potentially be examined for flow between 
minutes, using sequential methods. 
 Another use of CHUMS that we have not yet 
begun to investigate is in using models other than the 
multinomial-team-member-dominance model.  For 
instance, there is no reason not to define a regression 
equation as the model under consideration.  One could 
model the linear relationship between two speakers at each 
minute, and see if the pattern changes over time.  Any 
model can be used, as long as it can be tested and assigned 
a model fit value for a data set. 
 
Results Relevant To Content Data: LSA 
 
 LSA is a versatile tool, having been applied to a 
range of types of written and spoken discourse  In the 
present study, the simplest uses of LSA have been to 
analyze vector length, sentence-to-sentence coherence, and 
vector variance.  These techniques each have mixed levels 

of usefulness in the present context.  We used the length of 
the vector representing each utterance as a measure of the 
amount of task-related information being conveyed. 
 The ratio of average LSA vector length per 
mission to average number of words per utterance for a 
mission (i.e., static communications efficiency), predicts a 
negative quadratic relationship between communications 
efficiency and mission performance (t(48) = -2.5, p = .016).  
This usage of LSA defines an optimal level of information 
transmission per communication that is descriptive of top 
performances. 
 A somewhat less automatic, but more content-
oriented use for LSA is to extract communication content 
codes.  This can be done by using LSA to generate a 
correlation matrix of utterances with other utterances, then 
cluster highly correlated utterances.  Each original 
utterance can be classified according to the cluster of which 
it is a part.  Results of human-human reliability for tagging 
have a c-value of 0.73, while LSA-human reliability is at 
0.57.  This method, combined with PRONET, has been 
used to identify typical communication content sequences 
among teams (Kiekel, Cooke, Foltz, & Shope, 2001).  
Frequency of occurrence for a set of common content 
sequences can then presumably be used to predict 
performance.  This work is currently underway. 
 LSA has also been used to predict overall team 
performance scores by correlating entire mission transcripts 
with one another.  For this approach to be useful, it requires 
that a subset of transcripts be associated with known 
performance scores.  The score of a “new” transcript (i.e. 
one with unknown performance score) can be estimated by 
computing its proximity to all the “known” transcripts.  A 
proximity-weighted average of the 10 closest “known” 
transcripts’ performance scores along with other statistical 
measures of the content are taken to be the predicted score 
for the “new” transcript. 
 After accounting for the repeated measures 
structure of the same 11 teams over 7 missions, we found a 
positive correlation between the LSA measure and 
performance, R2 = .389, F(1, 49) = 31.217, p < .001. 
 Mission by mission analysis shows that this 
measure is more predictive for earlier missions than for 
later.  Mission 1 yields R2 = .707, F(1, 8) = 19.269, p = 
.002.  Mission 2 yields R2 = .558, F(1, 8) = 10.093, p = 
.013.  Mission 3 yields R2 = .709, F(1, 8) = 19.515, p = 
.002.  Mission 4 yields R2 = .290, F(1, 8) = 3.275, p = .108.  
Mission 5 yields R2 = .626, F(1, 7) = 11.714, p = .011.  The 
latter two missions did not yield adequate predictions.  This 
may be due to there being greater inter-team differences in 
the earlier missions. 
 Other approaches to using LSA for team cognition 
are also under evaluation.  One way to use LSA to measure 
coherence is to take the mean cosine between each 
utterance and its sequel.  This measure shows a U-shaped 
curve in its relation to performance, with either too little or 
too much coherence leading to poorer performance (Foltz, 



 

Kintsch & Landauer, 1998). 
 Another untested candidate for a team cognition 
measure is the measurement of what information is being 
conveyed by which team members.  This task has a 
particular ideal information flow pattern.  Hence, we would 
be interested in assessing how far a particular team-at-
mission deviates from that ideal.  The approach would be to 
specify a priori which actual content should be 
appropriately conveyed by which speakers.  This can be 
done by creating excerpts that are prototypically 
representative of the information in question.  Then 
researchers can classify actual team utterances by 
correlating each utterance with each excerpt.  This tells us 
approximately what each person is saying when they speak. 

 
CONCLUSIONS 

 
 The methods presented here can be manipulated in 
an infinite number of ways.  We have only begun to 
examine the potential uses.  Once we have derived a set of 
known valuable methods, it will be possible to create 
software and hardware that can very rapidly collect and 
analyze these data. 
 Since many of the methods require no human 
intervention, the analyses can be conducted as fast as the 
machinery that processes it can handle.  Such tools have the 
potential to be used to characterize team performance in 
real time.  Decisions made in real time can be used for 
interventions of various sorts. 
 These preliminary results show strong promise in 
using automated communication methods to measure team 
performance and cognition.  Most of the methods are 
predictive of performance.  Tools such as these permit a 
holistic measurement of team cognition, while avoiding 
some of the pitfalls of time consumption and weak 
reliability. 
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